

GCSE Maths – Probability

Tables of Outcomes and Frequency Trees

Notes

WORKSHEET

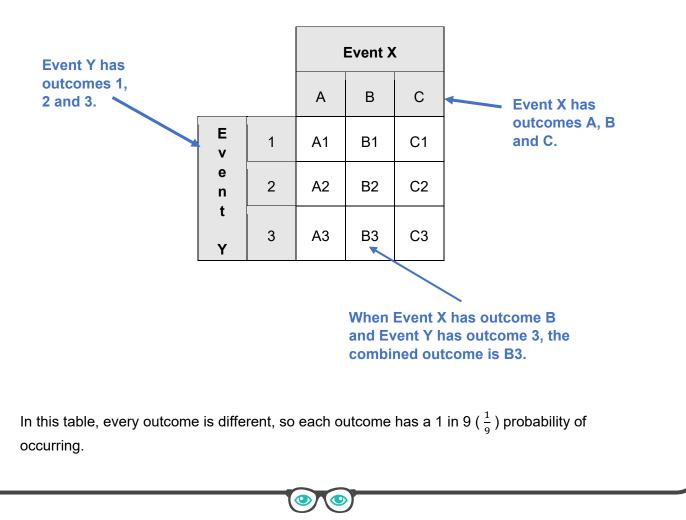
This work by <u>PMT Education</u> is licensed under <u>CC BY-NC-ND 4.0</u>

▶
 O
 O

 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 <td

Combined Events

By **listing**, **displaying** or **counting** the possible outcomes of multiple combined events, the probability of each independent outcome occurring can be calculated.


Table of Outcomes

A table of outcomes is a **visual** method of showing the possible results of **two independent events**. The table can then be used to find the probability of each possible outcome occurring.

Events are **independent** if the probability of one event occurring does not affect the probability of the other event occurring.

Constructing a Table of Outcomes

In a table of outcomes one event's outcomes are displayed **vertically**, and the other's displayed **horizontally**. Each box in the table represents one possible combined outcome.

Example: Two fair, six-sided dice are rolled at the same time. Construct a table of outcomes for the product of the values show on the die.

1. Identify the two events.

Event 1: *Dice roll 1-6*. Event 2: *Dice roll 1-6*.

2. Identify the operation.

"...for their product." – so the operation is multiplication of their values

3. Draw the table and fill in the combined outcomes.

		Die 1					
		1	2	3	4	5	6
D i e	1	1	2	3	4	5	6
	2	2	4	6	8	10	12
	3	3	6	9	12	15	18
	4	4	8	12	16	20	24
2	5	5	10	15	20	25	30
	6	6	12	16	24	30	36

Calculating Probability

Once a table of outcomes is completed, it can be used to **calculate the probability** of each combined outcome. Firstly, the **target outcome is identified** and the **number of appearances are counted**. The probability of a particular outcome is the number of target outcomes divided by the total number of outcomes.

 $Probability = \frac{Appearances of required outcome}{Total number of possible outcomes}$

▶ Image: Second Second

www.pmt.education

Example: Two fair, six-sided dice are rolled at the same time. Calculate the probability that their product is a square number.

1. Construct a **Table of Outcomes** for the problem.

Events: Dice Roll 1, Dice Roll 2 Operation: Multiplication

		Die 1					
		1	2	3	4	5	6
	1	1	2	3	4	5	6
D i	2	2	4	6	8	10	12
e	3	3	6	9	12	15	18
2	4	4	8	12	16	20	24
-	5	5	10	15	20	25	30
	6	6	12	16	24	30	36

2. Identify the target outcome.

"...that their product is a square number." – so **square numbers** are the target outcome.

3. Count the appearances of the target outcome.

Square numbers: 1, 4, 9, 16, 25, 36

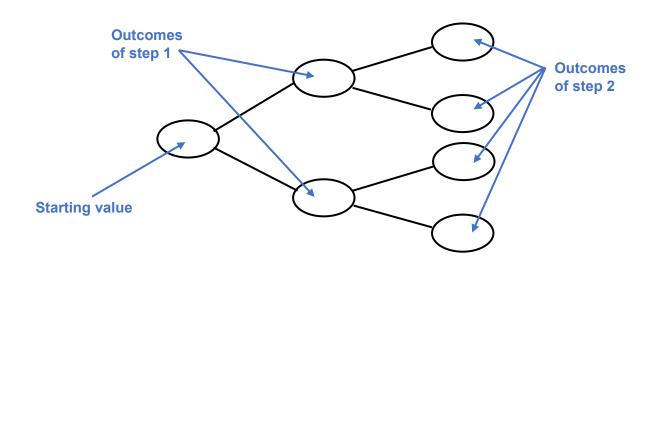
		Die 1					
		1	2	3	4	5	6
	1	<mark>1</mark>	2	3	<mark>4</mark>	5	6
Р	2	2	<mark>4</mark>	6	8	10	12
D i	3	3	6	<mark>9</mark>	12	15	18
е	4	<mark>4</mark>	8	12	<mark>16</mark>	20	24
2	5	5	10	15	20	<mark>25</mark>	30
	6	6	12	18	24	30	<mark>36</mark>

4. Calculate probability:

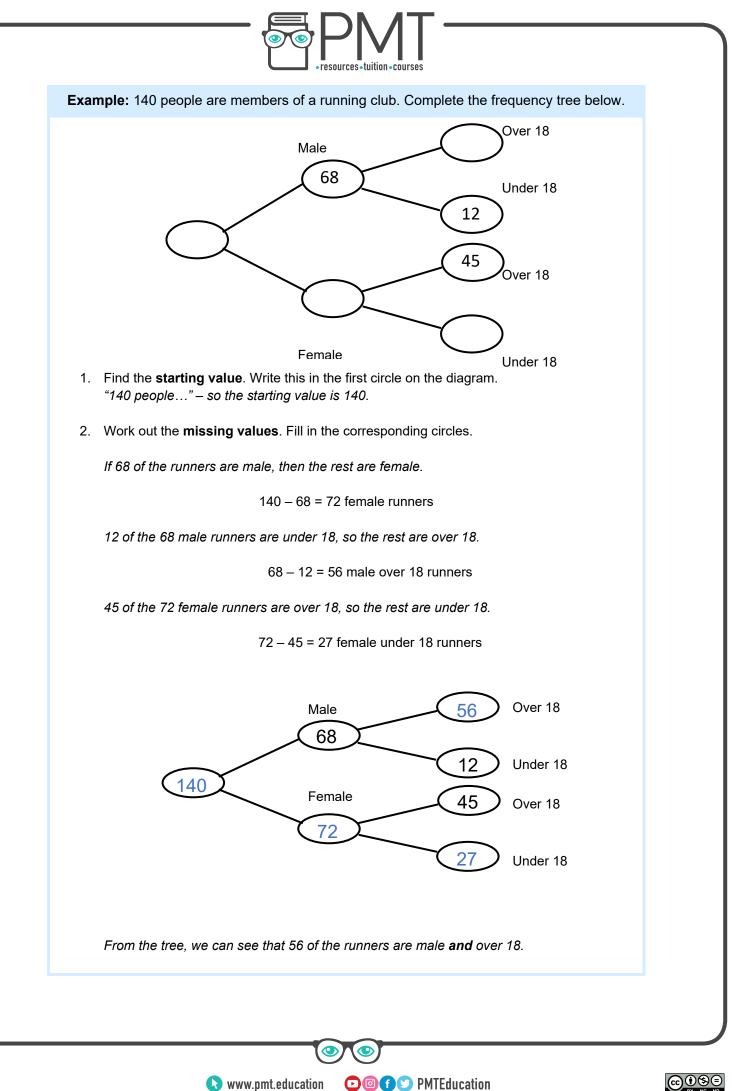
The diagram shows there are 8 ways of making a square number out of 36 possible outcomes.

6 square numbers out of 36 outcomes = $\frac{8}{36} = \frac{2}{9}$

The probability of getting a square number is $\frac{1}{6}$.


Frequency Trees

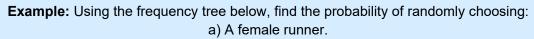
Frequency trees are a visual method of recording the possible outcomes of an event with **multiple steps**. You can use the tree to find the probability of any outcome occurring. Events can only be recorded if:

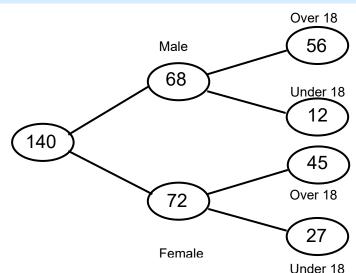

- they have 2 or more steps (such as being a square AND being blue).
- they have a definite starting value (such as the fixed number of balls in a bag).

Constructing a Frequency Tree

In a frequency tree, each outcome is displayed as a **branch** of the tree, spreading horizontally across the page.

▶ Image: Second Second


www.pmt.education



Calculating Probability

A frequency tree separates the starting value into a number of **sub-groups**. The probability of **randomly** choosing an item from one of the sub-groups can be calculated in a similar way to using the table of outcomes:

 $Probability = \frac{Number in required sub-group}{Total number in starting value}$

- Identify the sub-group in the question.
 "A female runner." so the sub-group is female.
- 2. Find the corresponding circle in the tree.
- 3. Calculate probability:

$$Probability = \frac{Number in required sub-group}{Total number in starting value} = \frac{72}{140}$$

The probability of randomly choosing a runner who is female is $\frac{72}{140}$.

b) A runner who is male and over 18.

Use the same steps as above to find the probability.

$$Probability = \frac{Number in required sub-group}{Total number in starting value} = \frac{56}{140}$$

DOG PMTEducation

Network www.pmt.education

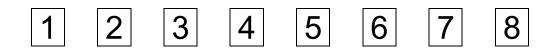


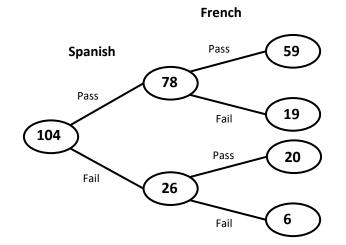
Table of Outcomes and Frequency Trees - Practice Questions

- 1. Construct a table of outcomes for each of the following scenarios:
- a) A fair coin is flipped and a 10-sided die is rolled. Record the possible combinations.
- b) A restaurant serves four main meals and four desserts, the prices shown in the tables below. Latisha chooses a main meal and a dessert at random. Record the possible prices of her meal.

Main	£	Dessert	£
Stir Fry	9.50	Brownie	4.50
Beef Soup	8.75	Apple Pie	4.20
Roast Lamb	14.00	Tiramisu	3.25
Carbonara	9.20	Trifle	3.90

- 2. A fair coin is flipped and a 10-sided die is rolled. Find the probability of getting a head and an even number.
- 3. Alex has 8 cards:

She takes one card followed by another to make a two-digit number. E.g.


Find the probability that:

- a) The number is more than 50.
- b) The number is even.
- c) The number is a multiple of 7.

log www.pmt.education

- 4. 104 students took their Spanish and French speaking exams. Write down the number of students who:
 - a) Passed Spanish
 - b) Passed both
 - c) Passed neither

- 5. 60 people are asked if they prefer strawberry or vanilla ice cream.
 - 24 of them are children.
 - One third of adults prefer vanilla.
 - 30 people in total prefer strawberry.

A person is chosen at random to win a free ice cream. Find the probability that they are:

a) A child.

- b) An adult who prefers strawberry.
- c) A child who prefers strawberry OR an adult who prefers vanilla.

Worked solutions for the practice questions can be found amongst the worked solutions for the corresponding worksheet file.

